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Molecular shape equivalence classes defined with respect to equivalence of geometrical
and topological properties are represented by logical models. Consequently, the factor space
of molecular shapes is provided by a metric useful in shape comparisons.
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1. Introduction

In the previous article [1] we have discussed the theory of logical models of mole-
cular shape representations. This theory is based on classical and quantum chemistry
approaches to modeling of molecular shape [2], on topology and differential geome-
try [3,4], and on theory of logical diagnostics [5–7]. It explores the fact that the topology
of a molecular shape is based on the partitioning of the molecular surface on two-, one-,
and zero-dimensional subsets with a finite set of properties. These subsets interrelate
with each other through known relations. This allows one implementation of the finite
topology principle based on the method of logical modeling introduced in the previous
article. The subset of these partitions, as a base, defines a finite topology, containing
a lower Boolean sub-lattice of this topology, corresponding to a Boolean n-cube as a
domain of the proposed logical model. A logical function can be obtained that reflects
the properties of the topological domains as well as the interrelations on the set of do-
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mains. Based on classical or quantum-chemical representations of molecular shape, as it
was shown in the previous article, these models allow one the implementation of meth-
ods of logical diagnostics [5–7] in chemistry, and the definition of a metric on the set
of molecular shape equivalence classes avoiding numerical characterization and explicit
embedding of objects into a vector space. The families of molecular shapes can be con-
sidered as sets of logical models or as a united, more complex logical model.

In the present article, we focus on the metric properties of the factor space of shape
equivalence classes. In the following section, the new discrete mathematical concepts
related to the theory of logical modeling of molecular shapes, proposed in [1] are briefly
recalled.

2. Method of metric and semimetric on the set of functional models
2.1. Logical models

A logical modelf (x1, . . . , xn) is a function from a finite Cartesian product

X1 × · · · × Xn

of variable values to a finite set Y of function values:

f :X1 × · · · ×Xn→ Y.

Function variablescorrespond to elements of object structure. Function values
reflect properties and interrelation of these elements.

As an example, logical diagnostics models [5,7] and Boolean models of discrete
N-dimensional systems for ecological studies [8] can be considered. In the case of mole-
cular shape, object structure is defined as a set or a subset of the set of two-dimensional
domains from shape partition. These domains are considered as structural elements.
Their properties defined as local curvature properties, their interrelation depends on
neighboring conditions. Domain of a functional model is Boolean n-cube with atoms
corresponding to the structural elements.

Notice that as functional models one may consider many earlier discrete mathe-
matical models, for example, shape matrices and shape codes [2]. Indeed, in the case
of shape matrix there are two variables that correspond to structural elements (shape
domains). Function value reflects curvature indexes (from matrix diagonal elements) or
neighboring interrelation. In the case of shape code, there is only one variable that cor-
responds to positions of shape code elements, the function values correspond to Betty
numbers in these positions.

Shape families can be represented as finite functions from a space of parameter
values to the set of shape descriptors. For example, (a, b)-maps of the shape groups can
be considered as such functions.

2.2. Logical models of topological spaces with finite topology

Recall that logical model of a topological space of a finite topology can be con-
structed taking into account properties of base sets as well as their interrelations [1].
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Suppose that each base set has one of the finite number of properties {0, 1, 2, . . . , K−1}.
Moreover, assume, that the base sets participate in the symmetric relations

ρ
m1
0 , . . . , ρ

mi

i , . . . , ρ
ms−1
S−1

where a relation, ρmi

i , is a symmetric relation if, together with any mi-ordered set (mi-
tuple), it contains any of its permutations. (We assume that the system of these relations
is orthogonal, i.e., each mi-tuple participate in only one mi-dimensional relation). In
addition, it should be noted that the mentioned properties and relations should be defined
based on the real properties of the geometrical or discrete structures of the modeled
objects. Also, the properties of all the elements from the base set of the topology, as well
as the relations on the set of base elements, are numbered 0, . . . , K − 1 and 0, 1, . . . ,
S − 1, respectively.

The information about geometry, as well as about the properties and interrela-
tions of the elements from the base of topology can be represented as a logical function
f (x1, . . . , xN ) or as an equivalent system of Boolean functions.

We use the Boolean N-cube BN isomorphic to lower Boolean sublattice o a finite
topology as a field of definition (domain) of a logical function f (x1, . . . , xN), f :BN →
{0, 1, . . . , k− 1}, k = max(K, S). This function maps the elements from the base of the
topology to the values defining their properties from the set {0, 1, . . . , K−1} of numbers
of the properties. Later, if the sets A1, . . . , At from the base of the topology belong to
relation

ρ
mt
t ,

then the function takes the topology element corresponding to the union of these base
sets to the value t from the set {0, 1, . . . , S − 1}. Finally, the function f takes all the
remaining elements of Boolean N-cube BN to the zero value.

The corresponding examples were given in previous paper [1].

2.3. Logical equivalence relation on topological spaces

Let us consider two finite partitions �1,�2 of the sets X1, X2. We assume that
these partitions are chosen taking into account some natural properties of real ob-
jects, denoted as sets X1, X2. Consider that the equivalence relations corresponding
to these partitions are isomorphic under a given isomorphism ϕ :X1 → X2. Hence,
there exists a bijection ψϕ :�1 → �2 such that for all elements x of the subset
A ∈ �1 → ϕ(x) ∈ ψϕ(�1). Let T1, T2 be topologies corresponding to isomorphic
(with respect to isomorphism ψϕ) subsets of two partitions �1,�2. These topological
spaces are referred to as isomorphic topological spaces. Furthermore, we assume that
the elements of bases Bi , B1 ⊆ T1, B2 ⊆ T2 possess some properties and participate in
symmetrical relations reflecting the natural properties and interrelations of correspond-
ing parts of the sets X1, X2. If these properties and relations are isomorphic under the
same isomorphism ψϕ , assuming that isomorphic properties and relations possesses the
same physical sense, we refer the isomorphic topological spaces (X1, T1) and (X2, T2)
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with finite topologies (as well as the corresponding natural objects) as equivalent with
respect to system of properties and relations under isomorphismϕ.

Two topological spaces (X1, T1) and (X2, T2) with finite topologies are called
equivalent with respect to a given system of properties and relations (they are logically
equivalent) if they are equivalent with respect to the system of these properties and rela-
tions under some isomorphismϕ.

By definition, the following statement is valid:

Statement 2.1. Two objects X1 and X2 are equivalent with respect to the system of
properties and symmetric relations on the topology base under given isomorphism
ϕ :X1 → X2 if and only if two logical functions defined using this system coincide.

2.4. Test sets and logical diagnoses

Let as consider N distinct vectors (v1, . . . , vj , . . . , vn) describing feature values of
objects o1, . . . , oi, . . . , om. We assume, that these values are taken from finite sets Vj ,
j = 1, . . . , n of possible feature values. The diagnostics problem can be formulated
as follows: define a minimal subset {j1, . . . , js} of the set {1, . . . , j, . . . , n} of features
that allows distinguishing the objects and describe their mutual differences. Notice that
a solution is ambiguous because, in general case, there exist a number of minimal sets.
Nevertheless, this problem is most important for practical applications in different fields
such as medicine, logic design, technical diagnostics etc.

Here we consider the general approach to solution of the diagnostics problem fol-
lowing the ideas proposed by Chegis and Yablonsky [5].

Let the vectors of feature values be considered as a functions fi , i = 1, . . . , n
from the set {1, . . . , j, . . . , n} of features to a finite set V =⋃n

j=1 Vj of possible feature
values (fi (j) ∈ Vj). These functions we consider as functional descriptors of objects
o1, . . . , oi, . . . , om.

Let N be the set of all function pairs (fp, ft ), p �= t , p, t ∈ {1, . . . , m}. A minimal
subset T = {j1, . . . , js} ⊆ {1, . . . , n} of these features is called a minimal test setfor the
set {f1, . . . , fi, . . . , fm} of functions if for each pair (fp, ft), p �= t , p, t ∈ {1, . . . , m}
there exists a feature j ∈ T such that fp(j) �= ft(j). The set of all pairs (fp(j)ft(j))

fp(j) �= ft(j), j ∈ T is called a diagnosiscorresponding to the test set T . Such a
diagnosis can be interpreted in terms of feature values. To calculate the minimal test
sets, it is convenient to calculate the discriminate functions fp,t such that

fp,t(j) =
{ 1 if fp(j) �= ft(j),

0 otherwise.
(2.1)

Making use of the above discriminate functions it is possible to construct a binary table
t = (tj,k) with a size n×((m−1)(m−2)/2), where tj,k = fp,t (j), k is the number of pairs
(p, t) under lexicographic (alphbetical) ordering. The minimum test sets correspond to
minimum coverings of the binary table by rows. (Recall that a row j coversa column
s if fj,s = 1. The subset T of rows covers the binary table if each column is covered
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Table 1
Functions fa(x1, x2, x3), fb(x1, x2, x3), and fc(x1, x2, x3), corre-
sponding to discriminate functions fab(x1, x2, x3), fac(x1, x2, x3),

fac(x1, x2, x3) and a metric w on the set of functions.

J fa fb fc fab fac fbc

0 0 0 0 0 0 0
1 3 3 3 0 0 0
2 3 3 3 0 0 0
3 0 0 1 0 1 1
4 3 3 3 0 0 0
5 1 1 1 0 0 0
6 1 1 1 0 0 0
7 0 1 2 1 1 1

w 1 2 2

by some row from the set T .) For calculation of minimum covering, one may use the
known logical methods [3,5–7,9,10].

Example 2.1. Three functions fa, fb, fc from the set {0, 1, 2, 3, 4, 5, 6, 7} of features
to the set V = {0, 1, 2, 3} of feature values are given in table 1 with corresponding
discriminate functions fab, fac, and fbc. The minimum covering {8} consists of a unique
row, that is the test set T = {9}, and the diagnosis can be represented then as the set of
pairs (

fa(7), fb(7)
) = (0, 1),(

fa(7), fc(7)
) = (0, 3),(

fb(7), fc(7)
) = (2, 3).

Notice that as logical models of objects, this approach allows us to implement
the functions of more than one variables. In this case, the sets of elementary feature
values are considered as structural feature values. For example, instead of feature values
1, 2, . . . , 9 from example 2.1. one may consider structural feature values (0,0,0), (0,0,1),
(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1) (table 2) and corresponding functions of
three variables.

We can conclude that to distinguishing the structural peculiarities of the considered
type of objects, one should:

(1) Implement the above modelling method to construct the logical models
fi(x1, . . . , xn), i = 1, 2, . . . , N , for all the study objects under consideration;

(2) Define the discriminate functions fi,j , i, j ∈ N , i �= j ;

(3) Construct the binary table where the rows correspond to the set of binary
n-tuples (a1, . . . , an) and at most N(N − 1)/2 columns represent nonzero dis-
criminate functions;
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Table 2
VDWS functions fa(x1, x2, x3), fb(x1, x2, x3), fc(x1, x2, x3) and
VDWS discriminate functions fab(x1, x2, x3), fac(x1, x2, x3),

fac(x1, x2, x3) for the VDWSs in figure 6(a,b,c).

fa fb fc fab fac fbc

000 0 0 0 0 0 0
001 3 3 3 0 0 0
010 3 3 3 0 0 0
100 0 0 1 0 1 1
100 3 3 3 0 0 0
101 1 1 1 0 0 0
110 1 1 1 0 0 0
111 0 1 2 1 1 1

w 1 2 2

(4) Derive the minimum coverings of this table by choosing the minimum number
of rows such that any column will contain the value 1 in at least one selected
row;1

(5) Interpret these coverings in terms of the objects under consideration.

2.5. A metric and semimetric on the set of objects

Defining positive numerical functional on the set of discriminate functions, one
may define metric or semimetric on the set of original objects. For example, such a
functional can be introduced as a weight function

w(f ) =
n∑

j=1

f (j) (2.2)

or, in the multivariable binary case,

wi.j=
∑

(a1,...,an)∈{0,1}n
fi,j (a1, . . . , an) (2.2a)

providing definition of a metric on the set objects (table 1).
The weight or other positive functional on the set of discriminate functions can

be considered as a distancebetween logical functions and, as a corollary, as a distance
between corresponding real objects. It is easy to see that the function d(x, y) defined on
the set of functional models fi(x1, . . . , xn) and possessing values

d(fi, fj ) = wi,j satisfies the metric properties (metric axioms)

d(fi, fi) � 0, d(fi, fi) = 0 ⇔ (fi = fi), (2.2)

1 This step correspond to the NP complete binary table coveringproblem [10,11]. Therefore a practical
implementation of the proposed method should make use of approximate algorithms.



A. Frolov et al. / Metric properties of factor space of molecular shapes 417

d(fi, fj ) = d(fj , fi), (2.3)

d(fi, fj )+ d(fj , fk) � d(fi, fk). (2.4)

The properties (2.2) and (2.3) are called the semimetric axioms. Implementing
other functional on the set of discriminate functions, one may lose the triangle prop-
erty (2.4). If all metric axioms are satisfied then a metric is defined on the set of objects,
if axiom (2.4) fails, then a semimetric is defined.

The proposed logical models allow one the investigation, comparison and diagnos-
tics of objects with geometrical and topological properties that can be described as a
system of symmetrical relations on a topology base for an appropriate topological space
(X, T ) with finite topology T .

For this purpose, one should be able to define the set X and its finite partition �,
and be able to choose the topology base sets from � and denote, using numbers, their
properties and interrelations reflecting essential natural peculiarities. From this data, the
logical description of the corresponding real object can be obtained. These descriptions
can be used providing implementation of known methods of data analysis and logical
diagnostics. It allows the definition of the metric or semimetric on the set of logical
models that can be used as a metric or semimetric on the set of real object equivalence
classes.

Notice, that for definition of the logical model of an object, we should take
into account the concrete bijection between the base of topology and the set of vari-
ables. Hence, comparing real objects, we assume that their logical models are de-
fined implementing isomorphic (with respect to concrete isomorphism) topological
spaces that can differ only in properties and relations on topology bases. At first
glance, other real objects may seem to be incomparable. Nevertheless, by introduc-
ing fictitious variables, it is possible to make them comparable. Thus, if we consider
two topological spaces (X1, T1) and (X2, T2) with finite topologies and their logi-
cally equivalent subspaces (X′1, T

′
1) and (X′2, T

′
2), we can denote f1(x1, . . . , xi, . . . , xj ),

f2(xi, . . . , xj , . . . , xn), f ′1(xi, . . . , xj ) = f ′2(x1, . . . , xi, . . . , xj , . . . , xn), as logical
functions corresponding to properties and relations on the bases of topologies T1, T2,
T ′1, T

′
2. With comparable functional descriptions of topological spaces (X1, T1) and

(X2, T2) f ′′1 (x1, . . . , xi, . . . , xj , . . . , xn), f ′′2 (x1, . . . , xi, . . . , xj , . . . , xn) we can intro-
duce fictitious variables xj+1, . . . , xn for the function f (x1, . . . , xi, . . . , xj ), and ficti-
tious variables x1, . . . , xi−1 for the function f2(xi, . . . , xj , . . . , xn). Notice, that the only
situation where topological spaces (X1, T1) and (X2, T2), with nonisomorphic topol-
ogy bases, are equivalent is when f1(x1, . . . , xi, . . . , xj ) = f2(xi, . . . , xj , . . . , xn) = c,
where c is a constant. Taking into account that all the functions take the n-tuple
(0, . . . , 0) to the value 0, we conclude that c = 0. According to the proposed method of
logical modeling, all objects corresponding to this trivial situation should be considered
as logically equivalent objects. In order to make these functions mutually comparable,
and to obtain a metric on the whole family, all the functions should have the same set
of variables. Methods of reducing functions with the same set of variables are known.
Notice that the distance d(f1, f2) allows the to find the number d(f1, f2)/(2k) of binary
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(n − k)-tuples which functions f1 and f2 take to distinct values (k is the number of
variables that are fictitious variables for both functions) [9,10].

The proposed in this section method of logical modelling and definition of a metric
or semimetric on the set of objects we call as the finite topology principle.The method of
a metric or semimetric definition can be implemented independentely on this principle
making use of the Chegis–Yablonsky approach to different discrete functional models of
the same class.

The proposed method of metric or semimetric definition provides an implementa-
tion of novel metric classification algorithms [12–14]. Notice that in general case, the
descriptors of objects as discrete functions cannot be considered as elements of a vec-
tor metric space. Indeed, discrete characterization of feature values can relate rather to
qualitative characterization of objects then its quantitative measuring. The new approach
allows us to define metric avoiding numerical characterisation of objects.

3. Logical models of molecular shapes

This section is devoted to logical models of molecular shapes and their families. It
relates to the previous section in that the topology of a shape is based on the partitioning
of a surface on two-, one-, and zero-dimensional subsets with finite set properties. These
subsets interrelate with each other through known relations. This allows implementation
of the finite topology principle, based on the method of logical modeling introduced in
the previous section.

3.1. Logical models of isoproperty contour surfaces

Recall that for the characterization of the shapes of molecular contour surfaces,
such as MIDCOs and MEPCOs, or an interpenetration of both, the surface is subdivided
into domains satisfying some local shape criteria. This is discussed in detail in chapter 5
of the referred monograph [2]. These absolute or relative shape domains satisfy some
geometrical or physical properties. For example, these domains may be thought as un-
bounded locally convex, locally concave, or locally-saddle-type subsets of a surface or
as unbounded sets deleted from the shape. More exactly, domains D can be truncated
by subdivision into three sets: the unbounded set C where C ⊂ D, the unbounded set
D′ ⊂ D, and the common boundary J of the sets C and D, i.e., J = clos(C)∩ clos(D),
where clos is the set-theoretical operation of closure. Set C is referred to as a deletedset
and set D′ is referred to as a truncatedset.

If all the truncated domains, nontruncated domains, deleted sets, and one-
dimensional boundaries (with the possible addition of the zero-dimensional boundaries
of boundaries) are taken into account, a partition of the surface can be obtained. This
partition satisfies all the conditions required by the proposed in previous article [1] logi-
cal modeling method: by considering the molecular surface before deletions as a set X,
the partitions act as subsets of X. Depending on the goal of modeling, an appropriate
subset of these subsets can be chosen as a base for topology T . For example, all these
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subsets can be chosen as a base, and in general, choosing all of the domains and deleted
sets as a base proves to be most useful. Yet, regardless of which base is chosen, the
elements of the topology base interrelate and possess some finite number properties. Fi-
nally, it should be noted that the same arguments apply to the adequateness of logical
modeling in cases if IPCO’s, VDWS’s, or interpenetrating of the above types of surfaces
are used.

Consider some properties of lower Boolean lattices under the assumption that all
the nontruncated domains, truncated domains, as well as all the deleted sets are used as
a base sets of topology T . For clarity, all of these sets are henceforth called domains and
are denoted as Di1

1 , . . . ,D
iN
1 .

In the general case, T i1,...,is
s (for s � 2) denotes the maximal finite set that contains

|T i1,...,is
s | nonempty subsets of maximal connected components which are subsets of the

intersection of the domains Di1
1 , . . . ,D

is
1 closures. It is assumed that each element of the

set T i1,...,is
s is obtained from one of such maximal connected component, after deleting

all the points that belong to closure of at least one other domain. If the deletion of such
points leads to an empty set, that should not be represented in the set T i1,...,is

s .
Assuming that T i1

1 = {Di1}, the sets T i1,...,is
s correspond to elements Di1

1 ∪· · ·∪Dis
1 ,

s = 1, . . . , N , of a lower Boolean sublattice. By taking into account the previously men-
tioned isomorphism ϕ, the sets correspond to the elements of Boolean N-cube as well.
Therefore, the properties of the sets T i1,...,is

s can be used to define a logical function f , as
was introduced in the previous section. In fact, the final definition depends on a prelim-
inary geometrical topological model of a molecular shape, but it is useful to note some
common agreements. For example:

f (0, . . . , 0,︸ ︷︷ ︸
i−1

1, 0, . . . , 0︸ ︷︷ ︸
N−i

) = 0, (3.1)

if D1 is a deleted set.
Moreover, f (a1, . . . , ai, . . . , aN) = 0, if

(T i1,...,is
s ) = ∅,

where ij are the numbers of the binary elements aij = 1.
Furthermore, for MIDCO- or MEPCO-based molecular shapes, the function is de-

fined such that

f (0, . . . , 0,︸ ︷︷ ︸
i−1

1, 0, . . . , 0︸ ︷︷ ︸
N−i

) = 1+ µ(Di), (3.2)

and

f (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
j−i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−j

) =
{

1, if clos(Di) ∩ clos(Dj) = T
i,j

2 �= ∅,
0, otherwise,

(3.3)
where µ(Di) is the curvature index of the domain Di .

The function f is referred as a molecular contour function(MCOF).
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3.2. Logical models of van der Waals surfaces

For the logical modeling of VDWSs, additionally, two items need to be accounted
for:

(a) the sets

T
i1,i2

2 , s = 2,

can contain more than one set; and
(b) the sets

T i1,...,is
s , s > 2,

can be nonempty. Note that these sets can consist of more than one, but less than N ,
maximal connected components, where N is the number of nuclei. All elements of the
sets

T i1,...,is
s , s > 2,

are either single-membered sets or empty sets. The single-membered sets consist of a
unique element that belongs to a sphere or spheres represented on the VDWS by some
domains

D
i1
1 , . . . ,D

is
1 .

If the number of spheres to which an element belongs is denoted as k, then, in the general
case, s does not equal k.

Although the theory of logical modelling can be generalized, in the present discus-
sion for clarity it will be restricted to the case where shapes satisfy the criterion that a
VDWS contains at least one domain from each sphere. In this case elementary geometry
shows that, in the case of s > 2, the sets T i1,...,is

s satisfy the following properties:

(a) |T i1,...,is
s | � 2;

(b) |T i1,...,is
s | = 2 implies the equality k = s for elements of single-membered sets

from T i1,...,is
s ;

(c) if |T i1,...,is
s | = 1 when s > 2 then k ∈ {s, s + 1} for an element of a single-

membered set from T i1,...,is
s .

According to the proposed logical modeling method, the construction of logical
models of molecular shapes represented by VDWSs can be achieved by utilizing the
following rules.

The topological space (VDWS, T ), where VDWS is the modeled van der Waals
surface, and T is a finite topology based on the set B of the VDWS domains

D
j

1 , j = 1, . . . , N,

should be chosen. It is assumed that some of these domains have been deleted, while
others have been left in the VDWS.
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The Boolean function f :Bm1 → {0, 1, . . . , N} is defined as follows:

f (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−i

) =
{

0 if Di is a deleted domain,

3 otherwise,

according to the rules (3.1) and (3.2);

f (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0,︸ ︷︷ ︸
j−i

1, 0, . . . , 0︸ ︷︷ ︸
N−i−j

) = ∣∣(T i,j

2

)∣∣, (3.6)

in the case, where the weight (the number of nonzero elements) of the N-tuple
r(a1, . . . , an), is greater than two, the indices i1, . . . , is , s > 2, correspond to the po-
sition of the nonzero elements of the binary N-tuple

f (a1, . . . , an) =




0 if | (T i1...is
s )′| = 0,

1 if |(T i1...is
s )′| = 1, and s = k,

3 if |(T i1...is
s )′| = 1, and s �= k,

2 if |(T i1...is
s )′| = 2.

(3.7)

As previously stated, k is the number of spheres to which a unique element of the
set (T i1...is

s )′ belongs.
The domain of f coincides with the N-cube isomorphic to lower Boolean sublat-

tice of the finite topology T . Assuming that the VDWS contains at least one domain
from each sphere, it can be shown that the function f (x1, . . . , xn) is well defined. This
logical function can be called the VDWS function.

Corresponding examples are given in [1].

4. Definition of a metric on molecular shape family

4.1. Logical models of molecular shape families

In this section, we describe one example of molecular shape family and logical
models for the shapes from this family.

Example 4.1. Consider a four-atom molecule of type AB3. The shapes shown in fig-
ures 1–5 consequently represent all the different geometrical topologies of molecular
shapes in bending oscillation corresponding to the “umbrella inversion” of the system
AB3 from [15]. All of the VDWSs contain four or five subdomains from the set{

D1
1,D

2
1,D

3
1,D

4
1,D

5
1

}
and maximal connected components Dj

k of VDWS that points belong to exactly k, k > 1,
van der Waals spheres.
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Figure 1. The first topologically different VDWS in the bending oscillation corresponding to the “umbrella
inversion” of an AB3 type molecular system [15] with the bond angle γ = γ1.

Figure 2. The second topologically different VDWS in the bending oscillation corresponding to the “um-
brella inversion” of an AB3 type molecular system [15] with the bond angle γ = γ2.

Figure 3. The third topologically different VDWS in the bending oscillation corresponding to the “umbrella
inversion” of an AB3 type molecular system [15] with the bond angle γ = γ3.

Overall, these shapes correspond to the various nuclear configurations that repre-
sent the elements of the dynamic sequence of equivalence classes of nuclear configura-
tions. The representative nuclear configurations differ from each other in bond angle γ .
In this particular case, all the domains are convex.
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Figure 4. The fourth topologically different VDWS in the bending oscillation corresponding to the “um-
brella inversion” of an AB3 type molecular system [15] with the bond angle γ = γ4.

Figure 5. The fifth topologically different VDWS in the bending oscillation corresponding to the “umbrella
inversion” of an AB3 type molecular system [15] the bond angle γ = γ5.

The partitions of molecular surfaces in figures 1–5 resulting from bond angles
γ1, γ2, γ3, γ4, γ5 such that γ1 > γ2 > γ3 > γ4 > γ5 generate the following sets:

(a) γ = γ1: D1
1,D

2
1,D

3
1,D

4
1, T

1,2
2 , T

1,3
2 and T

1,4
2 ;

(b) γ = γ2: D1
1,D

2
1,D

3
1,D

4
1,D

5
1, T

1,2
2 , T

1,3
2 , T

1,4
2 , T

2,5
2 , T

3,5
2 , T

4,5
2 , T

2,3
2 , T

2,4
2 , T

3,4
2 ,

T
1,2,3

3 , T
1,2,4

3 , T
1,3,4

3 , T
2,3,5

3 , T
2,4,5

3 and T
3,4,5

3 ;

(c) γ = γ3: D1
1,D

2
1,D

3
1,D

4
1,D

5
1, T

1,2
2 , T

1,3
2 , T

1,4
2 , T

2,5
2 , T

3,5
2 , T

4,5
2 , T

2,3
2 , T

2,4
2 , T

3,4
2 ,

T
1,2,3

3 , T
1,2,4

3 , T
1,3,4

3 , T
2,3,5

3 , T
2,4,5

3 and T
3,4,5

3 ;

(d) γ = γ4: D1
1,D

2
1,D

3
1,D

4
1, T

1,2
2 , T

1,3
2 , T

1,4
2 , T

2,3
2 , T

2,4
2 , T

3,4
2 , T

1,2,3
3 , T

1,2,4
3 , T

1,3,4
3

and T
2,3,4

3 ;

(e) γ = γ5: D1
1,D

2
1,D

3
1,D

4
1, T

1,2
2 , T

1,3
2 , T

1,4
2 , T

2,3
2 , T

2,4
2 , T

3,4
2 , T

1,2,3
3 , T

1,2,4
3 , T

1,3,4
3

and T
2,3,4

3 .

Here the sets T
i,j

2 , i, j ∈ {1, 2, 3, 4, 5}, i �= j , contain the one-dimensional set
that are the subsets of closures of both the domains Di

1 and D
j

1 ; the sets T
i,j,k

3 , i, j, k ∈
{1, 2, 3, 4, 5} are maximal finite sets that contain the single-membered components Ds

3

of closure of three domains Di
1,D

j

1 and Dk
1.

The five shapes in figures 1–5 are represented as VDWS functions in table 2.
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Figure 6. The topologically different VDWSs in the bending oscillation corresponding to the “umbrella
inversion” of an AB2 type molecular system.

4.2. A metric and semimetric on molecular shape family

In this section, the logical method of definition of a metric on the family of molec-
ular shapes will be described. This method explores the Chegis–Yablonsky approach
(section 2) to data analysis. To implement it, we should possess unified functional
descriptions of shapes from an embedding shape family. As such descriptors, matrix
codes [2], shape group codes [2], or functional models can be implemented. The main
advantage of unified functional descriptors is the possibility of their comparison and rep-
resentation of comparison results in a form of discriminate functions. From discriminate
functions one may construct the metric or semimetric distances between shapes follow-
ing the method described in section 2. Let us consider two examples. In this section we
implement this method in a frame of finite topology principle (section 2).

Example 4.2. Three logical models, obtained according to the rules (3.2), (3.3), (3.6),
(3.7) for the VDWSs in figure 6, where the topologically different VDWSs in the bending
oscillation corresponding to the “umbrella inversion” of an AB2 type molecular system.
are represented as logical functions in table 2.

To define the structural peculiarities, discriminating the three molecular shapes
under consideration, we should construct the discriminate functions fab(x1, x2, x2),
fac(x1, x2, x2), fbc(x1, x2, x2) according to the rule (2.1). The corresponding binary
table is shown as a part (see the three right columns) of table 2.

The weights w define one of many possible variants of metric on the set of three
molecular shapes in figure 6.

The minimal covering {(1, 1, 1)} contains only one row and we can see that the
value fx(1, 1, 1), x ∈ (a, b, c), allows to identify the function from the set {fa, fb, fc}.
This result can be interpreted in terms of preliminary WDVS models as follows: Three
WDVS differ from each other because the set T 1,2,3

3 contains distinct number of single-
membered sets; for WDVS in figures 6(a)–(c) these numbers are equal to 0, 1, and 2,
correspondingly.

Topological spaces corresponding to the shapes in figure 6 contain isomorphic
topologies. Let us construct the metric on the set of shapes in figures 1–5 that does not
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Table 3
VDWS functions for the VDWSs in figures 1–5.

a1, . . . , a5 fa fb fc fd fe

00000 0 0 0 0 0
00001 0 3 3 0 0
00010 3 3 3 3 3
00011 3 1 1 3 3
00100 3 3 3 3 3
00101 3 1 1 3 3
00110 0 0 1 1 1
00111 0 0 1 1 1
01000 3 3 3 3 3
01001 3 1 1 3 3
01010 0 0 1 1 1
01011 0 0 1 1 1
01100 0 0 1 1 1
01101 0 0 1 1 1
01110 0 0 0 3 1
01111 0 0 0 3 1
10000 3 3 3 3 3
10001 3 0 0 3 3
10010 1 1 1 1 1
10011 1 0 0 1 1
10100 1 1 1 1 1
10101 1 0 0 1 1
10110 0 0 1 1 1
10111 0 1 0 1 1
11000 1 1 1 1 1
11001 1 0 0 1 1
11010 0 0 1 1 1
11011 0 1 0 1 1
11100 0 0 1 1 1
11101 0 1 0 1 1
11110 0 0 0 0 0
11111 0 0 0 0 0

satisfy this property. Nevertheless, introducing fictitious variables we can make them
comparable and construct a metric on this set.

To calculate the metric we represent the VDWS functions (figures 1–5) in the uni-
fied form (introducing fictitious variables) in table 3. The discriminate functions and
their weights (distances between functions) are represented in table 4.

One minimal test set consists of three binary 5-tuples (test vectors), for example,
(0, 1, 1, 1, 0), (0, 0, 0, 0, 1) and (0, 0, 1, 1, 0).

It has to contain 5-tuples (0, 1, 1, 1, 0) or (0, 1, 1, 1, 1) because only these 5-tuples
distinguish the shapes in figures 4 and 5, and it must contain at least two more 5-tuples
because no single 5-tuple can distinguish shapes in pairs shown in figures 1 and 2, in
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Table 4
VDWS discriminate functions for the VDWSs in figures 1–5 and their weights w′.

a1, . . . , a5 fab fac fad fae fbc fbd fbe fcd fce fde

00000 0 0 0 0 0 0 0 0 0 0
00001 1 1 0 0 0 1 1 1 1 0
00010 0 0 0 0 0 0 0 0 0 0
00011 1 1 0 0 0 1 1 1 1 0
00100 0 0 0 0 0 0 0 0 0 0
00101 1 1 0 0 0 1 1 1 1 0
00110 0 1 1 1 1 1 1 0 0 0
00111 0 1 1 1 1 1 1 0 0 0
01000 0 0 0 0 0 0 0 0 0 0
01001 1 1 0 0 0 1 1 1 1 0
01010 0 1 1 1 1 1 1 0 0 0
01011 0 1 1 1 1 1 1 0 0 0
01100 0 1 1 1 1 1 1 0 0 0
01101 0 1 1 1 1 1 1 0 0 0
01110 0 0 1 1 0 1 1 1 1 1
01111 0 0 1 1 0 1 1 1 1 1
10000 0 0 0 0 0 0 0 0 0 0
10001 1 1 0 0 0 1 1 1 1 0
10010 0 0 0 0 0 0 0 0 0 0
10011 1 1 0 0 0 1 1 1 1 0
10100 0 0 0 0 0 0 0 0 0 0
10101 1 1 0 0 0 1 1 1 1 0
10110 0 1 1 1 1 1 1 0 0 0
10111 1 0 1 1 1 0 0 1 1 0
11000 0 0 0 0 0 0 0 0 0 0
11001 1 1 0 0 0 1 1 1 1 0
11010 0 1 1 1 1 1 1 0 0 0
10011 1 0 1 1 1 0 0 1 1 0
11100 0 1 1 1 1 1 1 0 0 0
11101 1 0 1 1 1 1 0 0 1 0
11110 0 0 0 0 0 0 0 0 0 0
11111 0 0 0 0 0 0 0 0 0 0

w′ 11 17 14 14 12 20 19 12 13 2

figures 1 and 3, and in figures 2 and 3, that are not distinguished considering 5-tuple
(0, 1, 1, 1, 0) as well.

The metric on the set of shapes in figures 1–5 can be given in tabular form as
is shown in table 5. If distances are defined as weights of discriminate function, as it
was accepted above, then they reflect the number of structural differences of compared
molecular shapes.

Consequently, the introduced logical models can be used to represent molecular
shape families. Moreover, the molecular shape families can be compared and distin-
guished by means of metric distances obtained from comparison of functional models.
The same can be concluded with respect to functional models of cross-sections of mole-
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Table 5
Metric on the set of shapes in figures 1–5.

Figure 11 12 13 14 15

11 0 11 17 14 14
12 11 0 12 20 19
13 17 12 0 12 13
14 14 20 12 0 2
15 14 19 13 2 0

cular surfaces, energy hypersurfaces, or spherical projections of folding macromolecules
etc.

5. Concluding remarks

A new discrete matematical method for modelling and comparison of molecular
shapes and their families was proposed in the previous article and further developed
for the chemical applications in molecular shape analysis evaluated in the present con-
tribution. As a result, the following Finite Topology Principle of logical modeling of
molecular shapes was founded:

(i) Choose appropriate quantum-chemical or classical preliminary model.

(ii) Choose a domain of logical model basing on General Finite Topology Prop-
erty.

(iii) Assign logical function values to domain elements and to subsets of these
elements reflecting their properties and interrelations.

(iv) Implement the method of logical diagnostics to describe differences of objects
and introduce a metric (or semimetric).

(v) Implement metric classification algorithms to classify the objects.

The most important features of the proposed method of molecular shape analysis
can be summarized as follows:

• The variables as well as the values of the logical models possess physical mean-
ing.

• The method reflects symmetrical relations of arbitrary degree on the modeled
object structure.

• The method allows one to define a metric or semimetric on the set of objects,
providing implementation of recently developed metric classification algorithms
as well as to making use of earlier for application of methods of logical diagnos-
tics for analysis of molecular shape dissimilarity.

• The diagnosis and the metric on the factor space does not depend on coding of
functional models.
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In conclusion, we outline the possible further implementations of the new method:

– Logical modelling and metric description of families of molecular shape cross-
sections.

– Logical modelling of spherical projection of folding macromolecules and other
spherical projections.

– Logical modelling of potential energy hypersurfaces.

– Evaluation of shape complementarity

– Decision-making systems organization.
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